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Adaptive VOF with curvature-based refinement

Mayank Malik‡, Eric Sheung-Chi Fan and Markus Bussmann∗,†

Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road,
Toronto, Ont., Canada M5W3G8

SUMMARY

Adaptive refinement is implemented in the context of the volume-of-fluid (VOF) methodology in order
to study the efficacy of resolving interfaces adaptively based on the local value of curvature. The usual
uniform mesh VOF implementation is modified slightly to ensure accurate advection of fluxes between
cells at different resolutions. Normals and curvatures are calculated accurately via height functions. Results
of a series of tests indicate that in most instances the use of adaptive refinement (when compared to
uniform refinement with a similar number of cells) leads to more accurate VOF advection. The results also
clearly show that curvature-based adaptive refinement leads to a distribution of errors along an interface
that is nearly independent of curvature. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Adaptive refinement is commonly applied to the simulation of one-fluid flows, but the use of
adaptivity in interfacial flow simulation is less common. And in many instances, when applied to
interfacial flow simulation on an Eulerian mesh (regardless of how the interfaces are represented:
level sets, markers, volume fractions, etc.), the refinement criterion is often nothing more than the
presence of the interface, which leads to interfaces represented at a uniform level of refinement, and
the remainder of the domain typically refined less (e.g. [1–12]). For a comprehensive overview of
adaptivity applied to Eulerian methodologies (primarily level sets, but others as well) for interfacial
flow simulation, see the recent review by Losasso et al. [13].
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Such an approach is a significant step forward from uniform mesh approaches, especially when
the interfacial physics are key to the phenomenon under study. Such is often the case, because
surface tension acts at the interface, and because interfaces between fluids are often associated
with large jumps in fluid properties like density and viscosity.

But why simply use the presence of the interface as the criterion for adaptivity? In many
circumstances, interfaces between fluids will demonstrate large variations in what we might term
‘complexity’. Figure 1 illustrates two examples of what we mean: the first is a sketch of an interface
along which the curvature varies dramatically; and the second illustrates a thin necking filament of
fluid. In both cases, some sections of the interfaces are more ‘complex’ than others, and ought to
be better resolved particularly if fluid phenomena such as rupturing and merging are of interest.

In more concrete terms, consider the splash of a liquid droplet onto a solid surface, an instance of
which is illustrated in Figure 2 [14]. There are various length scales present in such a phenomenon,

Figure 1. Two interfaces that demonstrate spatially varying ‘complexity’: on the left, the curvature varies
dramatically; on the right, a thin necking filament of fluid.

Figure 2. The splash of a droplet of molten tin onto a heated solid substrate [14].
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from the diameter of the impacting drop (not shown) to the diameter of a satellite. Uniform mesh
simulations of this and similar phenomena have been performed (e.g. [14–16]), but given the
range of length scales and the distribution of complex interfacial features, adaptive refinement of
interfaces would seem to be of value in better utilizing a fixed computing resource.

Curvature-based refinement is common in Lagrangian methods, where the mesh is aligned
with an interface and is advected with it; the moving-mesh method of Dai and Schmidt [17]
is but one example. However, we are aware of only a couple of examples of adaptive interface
refinement applied to fixed mesh simulations, and in no instance are details provided of the efficacy
of the methodology. Sussman et al. [18] implemented curvature-based refinement in the context
of an adaptive level set method, and presented results in which interface curvature was utilized
as a refinement criterion. And in a very recent paper on an unstructured volume-of-fluid (VOF)
flow solver, Löhner et al. [19] mention curvature-based refinement, but it is unclear whether this
technique was applied to generate any of the results in the paper.

Here, we examine the use of curvature-based adaptivity applied to the VOF (or volume
tracking) methodology, although the ideas presented could equally well be applied to other interface
representations. The objective is to study the efficacy of adaptive refinement of interfaces, as
measured by both global and local measures of error obtained from various tests of the algorithm,
by comparison with corresponding results obtained when the interface is uniformly resolved.

The remainder of this paper is organized as follows: in Section 2, we present the methodology:
a brief overview of volume tracking on a uniform mesh, the modifications required to volume track
on an adaptive mesh, the approach to mesh refinement and coarsening, details of the calculation
of interface normals and curvatures on an adaptive mesh, and finally a flowchart of one complete
timestep. In Section 3, results and a discussion of various tests of curvature-based adaptivity are
presented. The paper is summarized in Section 4.

2. METHODOLOGY

2.1. Uniform mesh volume tracking

Volume tracking is a so-called interface capturing method: rather than track an interface, fluid
volume fractions are trackedandadvectedwith the flow. In this work, a modified Youngs’ [20] piece-
wise linear interface calculation method is implemented; the following provides a brief overview.

Volume fractions are discrete values of a continuous indicator function f, equal to one within
fluid no. 1 and zero elsewhere, as illustrated in Figure 3(a). Referring to Figures 3(b) and (c), a
volume fraction of one denotes a cell that contains only fluid no. 1; a volume fraction of zero
denotes a cell that contains only fluid no. 2; and a volume fraction between zero and one implies
the existence of an interface. At each timestep, the interface is reconstructed with a linear segment
(in 2D) that is oriented according to a calculated normal, and positioned so that it partitions the
cell according to the known volume fraction. The linear segment is defined as

nx · x + ny · y + � = 0 (1)
where nx and ny are the x and y components of the normal and � is the line constant determined
from conservation of volume.

Following reconstruction, volume fractions are advected by the velocity field. Given a flow field
u, the advection of f is governed by the equation:

� f /�t + ∇ · (u f ) = 0 (2)
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Figure 3. (a) An interface between two fluids; (b) the corresponding volume fractions; and (c) the piecewise
linear reconstruction of the interface.

Figure 4. Geometric advection of fluid volume 〈 fi+1/2, j 〉 from one cell to another.

When applied to discrete volume fractions, Youngs [20] discretized the equation in an operator-split
manner that has been shown to be first-order accurate [21]. Given a known field f ni, j (the discrete
volume fractions at time step n), Equation (2) is discretized as

f ∗
i, j =

f ni, j Vi, j − (ui+1/2, j 〈 f 〉i+1/2, j − ui−1/2, j 〈 f 〉i−1/2, j )�y j�t

V ∗
i, j

(3a)

f n+1
i, j = f ∗

i, j V
∗
i, j − (vi, j+1/2〈 f 〉i, j+1/2 − vi, j−1/2〈 f 〉i, j−1/2)�xi�t

Vi, j
(3b)

f ∗
i, j is the interim field that results from a sweep in one direction (in this case x), Vi, j is the cell

volume, u and v are face velocities evaluated as the exact average volume flux across a face (so that
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a given divergence-free velocity field is also discretely so), V ∗
i, j = Vi, j −(ui+1/2, j −ui−1/2, j )�y j�t

is the interim cell volume, �t = tn+1 − tn , and 〈 f 〉 refers to the volume fraction (the hatched area
illustrated in Figure 4) of the flux volume (the outlined area) that is calculated geometrically from
the reconstructed interface. Advection in the other direction (in the case of Equation (3b), the y
direction) completes one full time step. The order of advection is alternated from one timestep to
the next to minimize directional bias.

2.2. Adaptive mesh volume tracking

Unlike a uniform mesh, an adaptive mesh consists of cells of different sizes. In this work, the
adaptivity is implemented via a quadtree data structure as described by Samet [22], and as previously
implemented, for example, by Greaves [3]. The domain begins as a unit square of one cell; smaller
cells are created by recursive subdivision of a ‘parent cell’ into four ‘child cells’ until a desired

Figure 5. (a) Refinement: fine cell volume fractions are calculated from the reconstructed interface
in the parent cell; (b) coarsening: the coarse cell volume fraction is calculated as the average of
the four child cells; and (c) a special refinement procedure whereby fine cell volume fractions are

returned to their pre-coarsened values.
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level of refinement is achieved. The size of a cell depends on its refinement level: if we designate
the unit square to be level 0, then the size of any cell is �= (1/2)level. In the results to be presented,
the refinement level of an interface cell is determined by a criterion, bounded between prescribed
minimum and maximum levels.

Before discussing volume tracking on an adaptive mesh, we present the approach to calculating
volume fractions upon refinement/coarsening. Refinement involves dividing a cell into four child
cells and determining the volume fraction for each child. If the parent cell is completely full ( f =1)
or empty ( f =0), all child cells will have volume fractions of one or zero, respectively. If the
parent cell contains an interface, the volume fraction of each child cell is determined geometrically
as illustrated in Figure 5(a) from the reconstruction of the interface in the parent cell. Coarsening
is simpler: the volume fraction of a parent cell is the average of the volume fractions of the four
child cells, as shown in Figure 5(b). Finally, once in a while four cells are coarsened only to
have the refinement criterion immediately indicate that the now coarse cell ought to be refined;
to prevent loss of accuracy, the child cells are returned to their pre-coarsened state, as illustrated
in Figure 5(c).

Figure 6. Volume advection: (a) from fine cells to a coarse cell and (b) from a coarse cell to fine cells.
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Moving on to a description of volume tracking, interface reconstruction is exactly the same
on an adaptive mesh as on a uniform one: a linear segment, defined by a normal and a line
constant, is used to represent the interface. Advection, on the other hand, is different when it
occurs between cells of different size, as will happen when an interface is adaptively refined.
Referring to Figure 6, whether advection occurs from the two fine cells into a coarse one (Figure
6(a)) or from a coarse into two fine cells (Figure 6(b)), flux volumes are determined at the scale
of the fine cells, which in the case of Figure 6(b) implies calculating fluxed volume fractions in a
way not required on a uniform mesh.

2.3. Normal and curvature calculation

The accurate calculation of normals N=∇ f and curvatures � =−∇ ·(∇ f/|∇ f |) from VOF data has
long been an issue; recent work [23] makes clear that simple finite difference discretizations of ∇ f
yield normals that do not converge with mesh refinement, and values of � that deteriorate with refine-
ment. During implementation of the adaptive methodology presented here, we saw clear evidence
of such behaviour that made it impossible to use curvature as a refinement criterion. As a result,
we then implemented an entirely different approach, the so-called height function methodology
[24]; this is the reason we refer to this implementation as a modified Youngs’ [20] method. This
methodology yields normals and curvatures that converge with mesh refinement (these are first-
and second-order accurate, respectively [23]), at a fraction of the computing cost associated with
other recent methods (e.g. [21, 25]) that utilize iterative approaches to determining these quantities.

To summarize, consider Figure 7(b) that illustrates a 3× 7 stencil about an interface cell (i, j).
The stencil is oriented in the direction more normal to the interface; fluid ‘heights’ are then

Figure 7. (a) The 3× 3 stencil used to determine the orientation of (b) the resulting 3× 7 stencil.
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calculated as

hi =
k= j+3∑

k= j−3
fi,k�yk (4)

The interface normal and curvature are functions of the heights:

Nx = hi+1 − hi−1 and Ny =−2�xi (5)

�= hxx/(1 + h2x )
3/2 (6)

where

hxx = (hi+1 − 2hi + hi−1)/�x
2
i

hx = (hi+1 − hi−1)/2�xi
(7)

where the sign of N is chosen to point towards fluid no. 1. If the orientation of the interface is
more vertical than horizontal, the 3× 7 stencil becomes a 7× 3.

To choose the stencil orientation, we consider the 3× 3 stencil around the cell of interest (i, j)
and calculate the sums of volume fractions in the rows and columns about the perimeter of the
stencil, as illustrated in Figure 7(a). If the absolute difference between the sum of volume fractions
in rows j + 1 and j − 1 is greater than the difference between the sums in columns i + 1 and
i − 1, the stencil is extended vertically; otherwise, the stencil is extended horizontally.

Height functions are constructed at the level of refinement of each interface cell. If neighbouring
cells are coarser, they are temporarily refined; if neighbouring cells are finer, they are temporarily
coarsened. To refine a coarser neighbouring cell, the normal and line constant associated with
Equation (1) must already be available. For this reason, normals are calculated level by level, from
coarse to fine. Once height functions have been calculated, neighbouring cells are returned to their
original level of refinement.

Finally, it has been shown recently [23] that height functions only yield accurate normals
and curvatures when interfaces are well resolved within the 3× 7 stencil. Well-resolvedness
is of course the topic of this paper: as the curvature of an interface increases, so should the
level of resolution. Nevertheless, in a few instances we encountered fluid configurations within
3× 7 stencils that led to poor estimates of normals and curvatures. In particular, a poor stencil
is characterized by non-monotonic changes in volume fraction along the heights; an example
is illustrated in Figure 8(a). If the slope and curvature of the interface passing through cell (i, j) is
of interest, the stencil should ideally include no other interfaces. Yet the cell (i +1, j −3) contains
just such an interface, evidenced by a volume fraction ( fi+1, j−3 = 0.96)<( fi+1, j−2 = 0.97). In
such cases, for the purposes of calculating fluid heights, we set values such as fi+1, j−3 to one. In
all instances that we examined, this small fix yielded improved values of normals and curvatures.

2.4. Refinement criterion

The primary refinement criterion here is the product of the curvature and the cell dimension, which
is required to be less than a specified constant: � · �x<C , up to a maximum level of refinement.
There are, however, two other conditions for refinement in our implementation: when the difference
in refinement level between two neighbouring cells is greater than one, the coarser cell is refined;
and when advection occurs from an interface cell to a coarser non-interface cell, the coarser cell
is refined as well, to prevent loss of accuracy. In what follows, we refer to these last two criteria
as ‘quadtree neighbour dependency’ and ‘quadtree advection dependency,’ respectively.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:693–712
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Figure 8. (a) A 3× 7 stencil that includes a second interface and (b) a modified stencil.

2.5. Timestep flowchart

To summarize, the following is a flowchart of the algorithm for one timestep.
At the beginning of a simulation, all interface cells are refined to the maximum level in order

to calculate an accurate volume fraction distribution; normals and curvatures are then calculated,
and cells are coarsened as appropriate. Then the timestepping cycle begins; during each cycle:

1. cells are checked for ‘quadtree advection dependency,’ and refined if necessary;
2. normals are calculated in a level-by-level approach from coarse to fine, and volume fractions

are advected in one direction;
3. normals are re-evaluated, and volume fractions are advected in the other direction;
4. curvatures are calculated, and cells are coarsened according to the criterion;
5. curvatures are calculated again, and cells are refined if � · �x>C ; then cells are checked

again, this time for ‘quadtree neighbour dependency,’ and refined if necessary;
6. the timestep is complete; return to step 1, and switch the order of advection.

3. RESULTS

We now present the results of four test cases to illustrate the efficacy and error characteristics
of adaptive VOF with curvature-based mesh refinement. The error we calculated for each case is
defined as

E =∑

all
(| f Ti, j − f Oi, j |) · Vi, j (8)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:693–712
DOI: 10.1002/fld



702 M. MALIK, E. S.-C. FAN AND M. BUSSMANN

Ta
bl
e
I.
Su

m
m
ar
y
of

si
m
ul
at
io
n
re
su
lts
.

R
efi

ne
m
en
t

cr
ite

ri
on

C
A
ve
ra
ge

no
.
of

E
rr
or

E
%

E
de
cr
ea
se

Te
st

L
ev
el

(�
×

�
x<

C
)

�
t

(×
10

−3
)

N
o.

of
�
t

in
te
rf
ac
e
ce
lls

∗
(×

10
−3

)
fr
om

un
if
or
m

C
ir
cl
e
st
re
tc
h

5
6.
25

00
64

0
72

2.
80

0
4–

6
0.
18

6.
25

00
64

0
71

1.
60

7
43

6
3.
12

50
12

80
14

3
0.
78

7
5–

7
0.
07

5
3.
12

50
12

80
14

1
0.
37

8
52

7
1.
56

25
25

60
28

5
0.
18

2
6–

8
0.
03

75
1.
56

25
25

60
28

2
0.
08

6
53

E
lli
ps
e
st
re
tc
h

5
6.
25

00
25

0
51

1.
12

6
4–

6
0.
25

6.
25

00
25

0
50

0.
71

2
37

6
3.
12

50
50

0
10

2
0.
12

8
5–

7
0.
11

3.
12

50
50

0
10

2
0.
07

4
42

7
1.
56

25
10

00
20

3
0.
01

9
6–

8
0.
05

5
1.
56

25
10

00
20

1
0.
01

6
14

E
lli
ps
e
ro
ta
tio

n
5

6.
25

00
64

0
62

7.
02

5
4–

6
0.
12

6.
25

00
64

0
66

8.
74

9
−2

5
6

3.
12

50
12

80
12

3
2.
59

1
5–

7
0.
06

3.
12

50
12

80
12

0
2.
47

2
5

7
1.
56

25
25

60
24

6
0.
82

0
6–

8
0.
03

1.
56

25
25

60
24

8
0.
97

0
−1

8

Sl
ot
te
d
di
sk

ro
ta
tio

n
6

3.
12

50
12

80
20

0
3.
86

3
5–

7
0.
1

3.
12

50
12

80
19

9
3.
39

4
12

7
1.
56

25
25

60
39

9
1.
43

4
6–

8
0.
04

5
1.
56

25
25

60
40

4
1.
00

8
30

∗ T
he

nu
m
be
r
of

in
te
rf
ac
e
ce
lls

is
th
e
av
er
ag
e
ov
er

th
e
en
tir
e
si
m
ul
at
io
n.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:693–712
DOI: 10.1002/fld
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The summation is over all cells, the superscripts O and T refer to initial and final values, and Vi, j
refers to the area of cell (i, j). In each test, an initial interface returns to its original position at
the end of a simulation; E then represents the error between the initial and final values of volume
fractions summed over the entire domain. A summary of all results is presented in Table I.

In all cases, the tests were run on adaptive meshes, first with the constraint that all interface cells
be refined to the same level �, and then on an adaptive mesh with interface cells refined based on
curvature, limited between levels �−1 and �+1. For conciseness, we refer to the first as a ‘uniform’
calculation and the second as a ‘curvature-based’ one. For each curvature-based calculation, the
constant C in the refinement criterion � · �x<C was chosen so that the number of interface cells
(averaged over time) was approximately the same for the uniform and curvature-based calculations,
to enable a comparison. Timestep size was the same for an adaptive and corresponding uniform
mesh result; timesteps were chosen to limit the Courant number to 0.4 for all simulations.

The first case, illustrated in Figures 9 and 10, begins as a circle of radius 0.25 centred at the
origin; the following velocity field:

u =−�

4
(x2 − y2), v = �

2
xy (9)

stretches the circle into a triangular shape in 640 timesteps; the velocity field is then reversed
and the interface advected for another 640 timesteps so that the interface returns to its initial
configuration. Figure 9 shows the simulation results on a level 6 uniform mesh; Figure 10 shows
the corresponding curvature-based results, for ��x<0.075. It is important to note that we present
these two figures, and subsequent ones, not to compare the interface reconstructions, but to contrast
the adaptive and uniform meshes. In fact, we superimposed images such as 9(a), 9(e), and 10(e) to
compare the interface reconstructions, but the superimposed images were difficult to distinguish.

Comparing Figures 9(c) and 10(c), the efficacy of the curvature-based approach is most evident.
Initially the circle is resolved equally well: the curvature-based refinement calculates curvatures
that lead to refinement of the circle at the same level as the uniform results. But as the cir-
cle is stretched, the curvature increases at the corners of the triangle, which then are resolved
more accurately, at the expense of the sides of the triangle that require less resolution. Overall,
the curvature-based approach yields an error 52% less than the uniform one. Comparisons of
coarser (level 5 versus levels 4–6) and finer (level 7 versus levels 6–8) results demonstrate similar
decreases (Table I).

Curvature-based results of the second case are illustrated in Figure 11. An initial ellipse, defined
by x2/0.12 + y2/0.01= 1, is advected by the following velocity field:

u =−8

5
x, v = 8

5
y (10)

The ellipse is compressed horizontally and stretched vertically; the field is then reversed and the
interface returns to its initial configuration. The results are similar to those of the first test: the use
of adaptivity in representing the interface leads to a significant decrease in the final error E .

The final two tests are fundamentally different than the first two, in that the velocity field is
a solid body rotation, so that the shape of the interface should not change. Figure 12 illustrates
the results of an ellipse (equivalent to that of the second test) that is rotated about its centre.
Figure 12(a) shows the initial uniform level 7 ellipse; Figure 12(b) shows the final uniform level
7 result; and Figure 12(c) shows the final curvature-based level 6–8 adaptive result. Unlike the
previous cases, the benefits of adaptivity are less obvious: the high-curvature ends of the ellipse are
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(a) (b)

(d)(c)

(e)

Figure 9. Circle stretch on a level 6 uniform mesh at timesteps: (a) 0;
(b) 320; (c) 640; (d) 960; and (e) 1280.
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(a) (b)

(d)(c)

(e)

Figure 10. Circle stretch on a level 5–7 curvature-based adaptive mesh at timesteps: (a) 0;
(b) 320; (c) 640; (d) 960; and (e) 1280.
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(a) (b)

(d)(c)

(e) (f)

Figure 11. Ellipse stretch on a level 5–7 curvature-based adaptive mesh at timesteps: (a) 0; (b) 63;
(c) 125; (d) 188; (e) 250; and (f) 500.
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(a)

(b) (c)

Figure 12. Ellipse rotation: (a) the initial level 7 ellipse; and final ellipses after one complete rotation;
(b) a level 7 uniform calculation; and (c) a level 6–8 curvature-based adaptive calculation.

Table II. Level 6–8 rotation results for ellipses of different aspect ratio a/b.

Refinement Average no. of Error E % E decrease
(a/b)2 criterion C interface cells (× 10−3) from uniform

6 0.036 263 0.765 −64
12 0.030 248 0.970 −18
24 0.026 239 0.932 19
36 0.024 232 1.065 15
48 0.023 231 1.105 15

Results correspond to 2560 timesteps with �t = 1.5625× 10−3.
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certainly better represented by the curvature-based adaptive mesh, but apparently at the expense
of a significantly poorer representation elsewhere: the error of the curvature-based adaptive result
is 18% greater than that of the uniform result. This case was run at two coarser resolutions as
well, as summarized in Table I; the results were similarly unimpressive. To better understand this,
we ran level 6–8 simulations of the rotation of ellipses of other aspect ratios (by varying the size
of the minor axis), and compared errors to corresponding uniform ones. The results are presented
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Figure 13. Histograms of error distribution at the end of an ellipse rotation (Figure 12): (a) a level 7 uniform
calculation (standard deviation of 0.119) and (b) a level 6–8 curvature-based calculation (standard deviation
of 0.055). Note that in (a), the number of cells with an error between 0.00 and 0.01 is actually 154.
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Figure 14. Average error | f T − f O| versus curvature for the uniform and adaptive results
of the rotating ellipse (Figure 12).

in Table II, and show that the benefits of adaptivity increase with the complexity of the interface
(defined in this case as the aspect ratio), and that adaptivity as evaluated here (comparing a uniform
result to a three level result) can actually lead to larger errors on problems that do not include a
significant variation of curvature.

This third test nevertheless provides an opportunity to examine the distribution of error along an
interface. Figure 13 presents histograms of error | f Ti, j − f Oi, j | for both the uniform and curvature-
based adaptive results (to facilitate a comparison, the final results of both cases were converted to a
uniform level 7 mesh before calculating the errors). As expected, the histogram for the uniform case
indicates a large number of cells with very small errors (note that the first column in Figure 13(a)
actually extends to 154) and a few cells with large errors; these are cells near the high curvature
ends of the ellipse. The adaptive results, on the other hand, are characterized by a more uniform
yet narrower distribution of error: fewer cells with very small errors, but a maximum error that is
little more than a third of the maximum error on the uniform ellipse. In statistical terms, the few
large errors of the uniform case lead to a standard deviation of the error of 0.119, more than twice
the standard deviation of the curvature-based results (0.055). Finally, Figure 14 reinforces the same
message: on a uniform mesh, the average error in a cell increases dramatically with curvature; on
the curvature-based adaptive mesh, the errors remain nearly constant independent of curvature.

Finally, Figure 15 illustrates the results of the fourth test, the solid-body rotation of a slotted
disk (the disk radius is 0.3, the slot is 0.125 wide, and 0.3 high). Figure 15(a) shows a uniform
level 7 disk; Figure 15(b) shows the final slotted disk from a level 7 uniform mesh simulation; and
Figure 15(c) shows the final slotted disk of a corresponding curvature-based adaptive simulation.
In this case, the high curvature is entirely at the corners of the slot; the perimeter of the disk is less
curved; and the straight sides of the slot obviously have zero curvature. Close examination of the
corners demonstrates clearly that the curvature-based adaptive results have resolved these more
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(a)

(b) (c)

Figure 15. Slotted disk rotation: (a) the initial level 7 slotted disk; and results after one complete rotation;
(b) a level 7 uniform calculation; and (c) a level 6–8 curvature-based adaptive calculation.

clearly, while resolving the sides of the slots at a low resolution. Again, this test demonstrates that
curvature-based adaptivity leads to an overall reduction in the error.

4. SUMMARY

When adaptive mesh refinement is applied to Eulerian simulations of interfacial flow (using methods
like level sets or VOF), in most cases the resolution of interfaces is maintained at a constant level
even though curvature can vary dramatically when interfaces are advected by complex flows. This
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led us to study the efficacy of curvature-based refinement of interfaces, implemented here in a VOF
method, although the conclusions of this work may well apply to other interface representations
as well.

Regarding implementation, the adaptive mesh complicates the VOF advection step when neigh-
bouring cells are at different levels of refinement; and the use of curvature as the refinement criterion
led us to implement the height function methodology to calculate normals and curvatures.

From the results of 11 comparisons of adaptive and uniform refinement based on four test
cases, the adaptive results were more accurate in nine instances, with errors reduced by up to
50%. In the remaining two instances, the reason for an increase in error is not readily apparent,
although obviously the lower errors associated with increased resolution along parts of the interface
were more than offset by larger errors elsewhere. Finally, an analysis of the error distribution
along an interface clearly illustrates that curvature-based refinement leads to errors that are nearly
independent of curvature.
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